Hidden Markov Model Parameter Estimation for Multiple Dim Target Detection

نویسندگان

  • Sang-Wook Shim
  • Dae-Yeon Won
  • Eung Tai Kim
چکیده

This paper presents a modified hidden Markov model (HMM) filtering algorithm for detecting multiple dim targets in image sequence under low SNR condition. The proposed algorithm consists of three steps. As a first step, morphological filtering is applied for extracting features in pre-processing level. The second step is a hidden Markov model filter. To enhance a detecting performance of the filter, state transition probability matrix of HMM filter is updated to the re-defined parameter in each single recursive process. The estimation process uses potential target’s local path from several continuous frames. The last third step is subwindow application. When a target is detected, the target is treated by sub-window to apply individual HMM filtering for detecting multiple targets. Based on numerical results, the proposed algorithm has slightly better detecting performance for multiple targets from a sequence of an image sensor under very low SNR( 2 ; ) conditions

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrusion Detection Using Evolutionary Hidden Markov Model

Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training,  ...

متن کامل

Multiple-prediction-horizon recursive identification of hidden Markov models

This paper considers on-line identification of hidden Markov models via multiple-prediction-horizon recursive prediction error (RPE) methods. Working with multiple prediction horizons ensures that there is consistent parameter estimation, under appropriate excitation conditions. Simulation studies are included to illustrate the advantages of the proposed approach when compared to standard metho...

متن کامل

مدل یابی انتشار بیماری های عفونی بر اساس رویکرد آماری بیز

Background and Aim: Health surveillance systems are now paying more attention to infectious diseases, largely because of emerging and re-emerging infections. The main objective of this research is presenting a statistical method for modeling infectious disease incidence based on the Bayesian approach.Material and Methods: Since infectious diseases have two phases, namely epidemic and non-epidem...

متن کامل

A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences

The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012